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Characterization of Projection Lattices of 
Hilbert Spaces 
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The classical lattices of  projections of  Hilbert spaces over the real, the complex, 
or the quaternion number field are characterized among the totality of irreducible, 
complete, orthomodular, atomic lattices satisfying the covering property. To this 
end, so-called paratopological lattices are introduced, i.e., lattices carrying a 
topology that renders the lattice operations restrictedly continuous. 

INTRODUCTION 

Birkhoff and von Neumann (1936) were the first to stress the lattice- 
theoretic aspect of the foundations of quantum mechanics. Mackey (1957) 
provided a set of axioms for quantum mechanics: among other things, he 
assumed that the poset of  two-valued observables is isomorphic to the lattice 
of projections of some Hilbert space. Zierler (1961) examined what physi- 
cally plausible assumptions on a lattice are sufficient to ensure the existence 
of an isomorphism onto the projection lattice of some separable real or 
complex Hilbert space. In order to force the reals • or the complex numbers 
C as coordinatizing fields of  the examined class of  lattices, he made use of 
Pontrjagin's characterization of • and C as the only locally compact, 
connected fields; he derived the premises of Pontrjagin's theorem roughly 
from the following two conditions: (1) There exists an arcwise connected 
ideal of finite height. (2) Any ideal of finite height is compact. (Zierler, 
1961, pp. 1162ff). The underlying topology on the lattice is induced by a 
metric defined from the set of states on the lattice. 

Varadarajan (1968) sketched the lattice-theoretic frame for further 
considerations on the axiomatization of quantum mechanics as follows: It 
should comprise the class ~ or irreducible, complete, orthomodular, atomic 
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lattices enjoying the covering property (see also Beltrametti and Cassinelli, 
1981; Maeda and Maeda, 1970; Piron, 1976). Since in the meantime Finkel- 
stein et al. (1962) had pointed out the importance of quaternion quantum 
mechanics, the time had come to formulate the following problem 
(Varadarajan, 1968, p. 182): 

Characterize the projection lattices of Hilbert spaces over E, C, or H 
(quaternion numbers) in the class ~ described above. (As usual I term 
these projection lattices classical.) 

A solution of this problem in the separable case had already been given 
by Piron (1964) (cf. Varadarajan, 1968, p. 184), however, without clarifying 
why the three classical division rings come in. 

This problem has since been treated successfully in various manners 
[cf. Beltrametti and Cassinelli, 1981, Chapter 21 for an overview] and a 
geometrically inspired solution will also be presented here. 

In a subsequent paper I introduce the notion of a paratopological 
lattice, i.e., a lattice with top and bottom and a topology such that joining 
of skew (=meet-zero) elements and the dual operation are continuous 
mappings with open domains. Paratopological projective geometries have 
been studied in Szambien (1986); they correspond to the so-called topologi- 
cal projective spaces, which have a rather long history (cf. Doignon, 1971; 
Kolmogorov, 1932; Misfeld, 1968; S/Srensen, 1969), and they are appropriate 
tools in solving the characterization problem. In Theorem 1, I single out 
some properties of the classical projection lattices. Property (b) therein 
sharpens Theorems (3.4) and (3.5) of Cirelli and Cotta-Ramusino (1973), 
while property (c) is equivalent to their Theorem (3.2). In the proof of 
Theorem 1 convergence structures [used in Cirelli and Cotta-Ramusino, 
(1973)] are replaced by topologies, i.e., systems of open sets. The properties 
exhibited in Theorem 1 are then used in Theorem 2 to characterize the 
classical projection lattices as certain lattices from Lg provided with an 
extrinsic topology enjoying some compatibility conditions. In the proof, 
results from topological geometry and again Pontrjagin's theorem are 
exploited. The compatibility conditions correspond to ( ~ ) ,  (~2), (~4), and 
(&r in Cirelli and Cotta-Ramusino (1973) which there, however, are formu- 
lated with respect to the topology of states. (5f3) is superfluous, because 
any nondiscrete, locally compact topological division ring is already first 
countable (cf., e.g., Bourbaki, 1972, VI.9.3). Theorem 2 corresponds to 
Theorem (1.1) of Cirelli et al. (1974) [or to Theorem (5.1) of Cirelli and 
Cotta-Ramusino (1973) in the separable case]. Central parts of the proof 
of Theorem (5.1) of Cirelli and Cotta-Ramusino (1973) can already be 
found in Pickert's (1955, p. 265) monograph on projective planes; even 
SchSfer, (1980) has not noticed this fact in his thesis. It finally should be 
pointed out that a priori the extrinsic topology from the first claim of 
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Theorem 2 is not  connected  with the topo logy  of  states; it remains  an open 
p rob lem whether  this extrinsic topo logy  must  even coincide with the 
topo logy  of  states. 

R E S U L T S  

Let _L be a lattice with top 1 and bo t tom 0, (_L x _L)o be the set o f  pairs 
(a, b) f rom L• with a ^ b = 0 ,  (_L• be the set of  pairs ( a , b )  with 
a v b = 1, and r be a topo logy  on L; in the fol lowing ~ will always denote  
the restriction of  mapp ings  or topologies;  Sa := {b E _L: b <- a} denotes  the 
pr incipal  ideal  genera ted  by a E L. As a general  reference for  results f rom 
lattice theory  I take Birkhoff (1960). 

(L, r )  is called a paratopological lattice if, and only if, v [(_Lx _L)o and  
^ I(L x _L)I are cont inuous  mapp ings  with open domains .  By an orthocomple- 
mentation of  a lattice I mean  a m a p p i n g  •  L satisfying a ^ a •  
a v a • = 1, a 11 = a, and b •  < a 1, if a -< b, for  all a, b E L. I call a orthogonal 
to b (a_t_b) iff a -L -  < b. N o w  let L be a lattice with o r thocomplementa t ion .  
A state on _L is a m a p p i n g  s : L ~  ~ that  fulfills 0 -  < s(a)  -< 1, s(0) = 0, s(1) = 1, 
Y. s(ai)= s(sup{ai:  i E N})  for  any sequence ( a i ) ~  of  pairwise or thogonal  
lattice elements.  A state is called pure iff s = tu + ( 1 -  t)v with states u, v, 
and t E E, 0 < t < 1 always implies u = v. In the sequel, we consider  the set 

o f  all pure  states on L, and or, the coarsest  topo logy  on _L that  renders  
cont inuous  all e lements  of  E; o- is called the topo logy  of  states on L. 

Let H be a Hilber t  space with a d imens ion  of  at least 4 over  E, C, or 
H. Let P be the lattice of  project ions of  _H prov ided  with the respective 
topo logy  o f  states. We then have: 

Theorem 1. (a) The lattice P is irreducible,  complete ,  o r thomodula r ,  
a tomic,  and  has the covering proper ty .  

(b) The  pr incipal  ideal genera ted by a project ion of  finite rank  is a 
compac t  pa ra topo log ica l  lattice with respect  to the subspace  structure 
inheri ted f rom P. 

(c) The set o f  a toms o f  P is connected.  

Proof Part  (a) can be found  in M a e d a  and  Maeda  (1970, Theorem 
34.2). 

Part  (b). F rom Cirelli and Co t t a -Ramus ino  (1973, Theorem 4.1) (cf. 
Varadara jan ,  1968, Theo rem 7.23), we know that  or equals the weak opera to r  
topo logy  restricted to _P. But on _P the weak and the strong opera to r  topo logy  
coincide (cf., e.g., Kad i son  and Ringrose,  1983, p. 371). 

N o w  let a be a project ion of  finite rank rk(a ) ,  and let A := im(a )  
denote  its image  space,  ~, the norm topo logy  on H, M ~ v ] A  an open 
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subset of A, M*:={b~,~a: i m ( b ) n M # Q } ,  and for k ~ ,  O-<k-<rk(a), 
S(k) := {b ~ +a: rk(b) = k}. I then claim that 

B:= {M*: M e  v lA}u{S(k ) :  0<-- k<-rk(a)} 

is a subbase of the strong operator topology o) restricted to Sa. 
To prove this, I remark first of all that o) coincides with the point-open 

topology of mappings _H-~ _H, when restricted to P. Now, M is clearly an 
element of the point-open topology restricted to Sa; hence M ~ o) I Sa. 

Second, mapping b ~ Sa to its trace (=rank) is continuous; thus, the 
sets S(k) arise as clopen preimages, and _B is contained in o) I Sa. Since Sa 
is compact HausdortI from Cirelli and Cotta-Ramusino (1973, Theorem 
3.1) and since the topology generated by 13 is Hausdorff by Szambien (1986, 
remark 2, p. 16) and Misfeld (1968, p. 261), it even equals o) t Sa. Hence 
the claim is proved. 

Using the base B of  or I Sa, we infer from Szambien (1986, Theorem 3) 
that Sa is a paratopological lattice. 

Part (c) is immediate, since the underlying coordinate field is con- 
nected. [] 

Theorem 2. Let L be a lattice provided with a nondiscrete Hausdorff 
topology, such that conditions (a)-(c) of Theorem 1 are satisfied; then L 
is orthoisomorphic to a classical lattice of projections. If, furthermore, the 
given topology coincides with the topology of states on _L, then the ortho- 
isomorphism is even a homeomorphism. 

Proof From condition (a) we get that L is orthoisomorphic to the 
lattice of orthogonally closed subspaces of some vector space V over a 
certain division ring D. Orthogonality of subspaces in this vector space is 
given by some a-bilinear form on V, where a is an involutorial antiauto- 
morphism of D; for details concerning this classical result of Birkhoff and 
yon Neumann consult Maeda and Maeda (1970, Theorem 34.5). Now take 
a ~ L of finite height. Supposing (b), we infer that ~,a is a paratopological 
projective geometry coordinatized by D. Since the given Hausdorff topology 
is nondiscrete, we can apply Pickert (1955, p. 265) to conclude that D is a 
topological field, which of course is locally compact (cf. also Szambien, 
1986, proposition 3, remark 2). From Cirelli et al. (1974, Section 3) we 
know that a is continuous (see remark 4). As is well known, D may be 
either connected or totally disconnected. Now assuming (c), we infer using 
Salzmann (1955, p. 494) that D is connected. Then Pontrjagin's theorem 
yields that D equals one of N, C, or H. Hence the continuity of a implies 
that a is the identity on N, or complex, or quaternionic conjugation, 
respectively (see Varadarajan, 1968, pp. 181if). Thus, V is a pre-Hilbert 
space. Since orthomodularity is assumed, the Amemiya-Araki Theorem (cf. 
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Maeda and Maeda, 1970, Theorem 34.9) can be applied to give that V is 
even complete. So the first part of the theorem is proved. 

Now the orthoisomorphism noted above induces a bijection between 
the respective sets of pure states (cf. Cirelli et al., 1974, p. 143). By definition 
of the topology of states and by the transitivity of the initial constructions 
used in defining these topologies, the orthoisomorphism is continuous and 
open. [] 

Remarks .  (1) Hypothesis (c) can be weakened by requiring the con- 
nectedness of "affine lines" only (cf. Salzmann, 1955, p. 494; see also Cirelli 
and Cotta-Ramusino, 1973, p. 21). Instead of the Hausdorlt property it 
suffices to suppose that the given topology is not indiscrete (cf. Pickert, 
1955, p. 262). 

(2) Following SchSfer, (c) can be replaced by the following interesting 
condition: 

(d) The length of L is at least 5 and the fixed point set of the anti- 
automorphism c~ : D ~ D of the coordinatizing division ring is contained in 
the center of D. 

In Schfifer (1980) it is shown that (d) implies the connectedness of D 
(cf. also Wilbur, 1977, Theorem 5.8). 

(3) The topology of states is Hausdorff iff the family of pure states is 
separating in the usual sense (cf. Cirelli and Cotta-Ramusino, 1973, p. 20). 

(4) It is easily seen that Zierler's topology as defined in Zierler (1961, 
p. 1162) and the topology of states coincide on compact principal ideals 
of finite height. Therefore, the continuity of ce is already proven by Zierler 
in his addendum (Zierler, 1966) to Zierler (1961). 
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